

# [(DIMETHYLAMINO)METHYL]FERROCENE AS AN AMINE LIGAND: STUDY OF THE BONDING AND X-RAY CRYSTAL AND MOLECULAR STRUCTURE OF THE PENTACARBONYL{[(DIMETHYLAMINO)- METHYL]FERROCENE}TUNGSTEN COMPLEX

Axel FISCHER<sup>a1</sup>, Frank T. EDELMANN<sup>a2</sup>, Klaus JACOB<sup>b</sup>, Ivan PAVLÍK<sup>c,d,\*</sup>  
and Martin PAVLIŠTA<sup>d1</sup>

<sup>a</sup> Department of Chemistry, Otto-von-Guericke-University Magdeburg, Universitäts-Platz 2,  
D-39333 Magdeburg, Germany; e-mail: <sup>1</sup>axel.fischer@vst.uni-magdeburg.de,

<sup>2</sup> frank.edelmann@chemie.uni-magdeburg.de

<sup>b</sup> Department of Inorganic Chemistry, Martin-Luther-University Halle-Wittenberg, Geusaer Str. 88,  
D-06217 Merseburg, Germany; e-mail: jacob@mailsrv.rz.fh-merseburg.de

<sup>c</sup> Department of General and Inorganic Chemistry, Faculty of Chemical Technology,  
University of Pardubice, CZ-53210 Pardubice, Czech Republic; e-mail: koanch.fcht@upce.cz

<sup>d</sup> Research Centre New Inorganic Compounds and Advanced Materials, University of Pardubice,  
CZ-53210 Pardubice, Czech Republic; e-mail: <sup>1</sup>martin.pavlista@upce.cz

Received July 11, 2001

Accepted December 3, 2001

The heterodinuclear complex  $[\text{W}(\text{CO})_5(\text{Me}_2\text{NCH}_2\text{Fc})]$  (Fc = ferrocenyl) (**1**) resulting from the reaction of [(dimethylamino)methyl]ferrocene (**2**) and  $[\text{W}(\text{CO})_6]$  was studied by single-crystal X-ray diffraction. Its molecular structure confirms the coordination of the amine nitrogen in **2** to tungsten ( $d(\text{W}-\text{N}) = 2.359(5)$  Å) and reveals its *trans*-influence in the  $\text{W}(\text{CO})_5$  moiety. The structure is discussed in relation to several previously referred spectroscopic (IR, UV-VIS,  $^{13}\text{C}$  NMR) data.

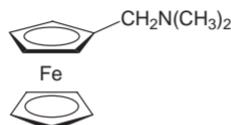
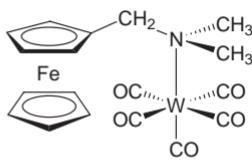
**Keywords:** [(Dimethylamino)methyl]ferrocene; Ferrocenes; Carbonyl complexes; Tungsten; Heterodinuclear complex; X-Ray diffraction; Bonding properties; Multinuclear NMR spectroscopy.

Recently, we have reported on the syntheses of two novel heterodinuclear complexes<sup>1</sup>  $[\text{M}(\text{CO})_5(\text{Me}_2\text{NCH}_2\text{Fc})]$  (M = Mo, W; Fc = ferrocenyl) and their characterization by mass spectrometry and Mössbauer, IR, UV-VIS and  $^1\text{H}$ ,  $^{13}\text{C}$ ,  $^{15}\text{N}$  NMR spectroscopies. In the meantime, we have succeeded to grow crystals of  $[\text{W}(\text{CO})_5(\text{Me}_2\text{NCH}_2\text{Fc})]$  (**1**) suitable for single-crystal X-ray crystallographic study. In order to confirm the proposed bonding properties, the molecular structure of **1** was solved. In this note, the results of this study are reported, including the discussion of the resulting structural parameters in relation to IR, UV-VIS, and  $^{13}\text{C}$  NMR spectroscopic data of **1**.

## EXPERIMENTAL

## Synthesis and Characteristic Spectral Data of Complex 1

Complex **1** (see Chart 1) was prepared by reaction of [(dimethylamino)methyl]ferrocene (**2**) (Sigma-Aldrich) with  $[W(CO)_6]$  (supplied by Sigma-Aldrich), as described previously<sup>1</sup>. IR ( $\nu$ ,  $\text{cm}^{-1}$ ; only CO-stretching region; Nujol/CHCl<sub>3</sub>): 2 070 m/2 068 m, 1 983 s/1 980 m, 1 932 vs/1 928 vs, 1 919 vs/1 920 vs, 1 885 vs/1 890 s). UV-VIS (CHCl<sub>3</sub>):  $\nu_{\text{max}}$ ,  $\text{cm}^{-1}$  ( $\epsilon$ , 1 mol<sup>-1</sup> cm<sup>-1</sup>): 22 000 (240), 24 860 (1 050), 26 800 sh. <sup>13</sup>C NMR (only CO region; CDCl<sub>3</sub>, 90.57 MHz): 201.72 t,  $^1J(^{183}\text{W}, ^{13}\text{C}) = 152.60$  (*trans*-CO); 199.54 t,  $^1J(^{183}\text{W}, ^{13}\text{C}) = 132.94$  (*cis*-CO). For complete characterization and spectroscopic data, see ref.<sup>1</sup>.



## X-Ray Crystallographic Study

X-Ray-quality single crystals were grown from toluene. A suitable crystal was covered with inert oil, mounted on a fine glass fiber and transferred to a diffractometer (Bruker AXS Smart CCD system) in a stream of cold nitrogen. A graphite-monochromated MoK $\alpha$  radiation ( $\lambda = 0.71073$  Å) was used. Data were corrected in the usual fashion for Lorentz and polarization effects. Absorption correction (multi-scan method SADABS) was employed. The structure was solved by direct method using the SHELXS software package. The refinement on  $F^2$  was carried out by full-matrix least-squares analysis with SHELXL97(ref.<sup>2</sup>). All non-hydrogen atoms were refined with anisotropic thermal parameters, H-atoms riding or as rigid methyl groups.

*Crystal data for complex **1**:* [C<sub>18</sub>H<sub>17</sub>FeNO<sub>5</sub>W],  $M_r = 567.03$ , amber plate, monoclinic, space group  $P2_1/c$  ( $C_{2h}^5$  No. 14),  $a = 14.006(1)$ ,  $b = 10.4223(1)$ ,  $c = 12.823(1)$  Å,  $\beta = 99.383(3)$ °,  $V = 1 846.9(2)$  Å<sup>3</sup>,  $Z = 4$ ,  $D_{\text{calc}} = 2.039$  g cm<sup>-3</sup>;  $T = 173(2)$  K;  $\mu(\text{MoK}\alpha) = 7.04$  mm<sup>-1</sup>,  $\theta$  range 2.45–28.32°, limiting indices  $-15 \leq h \leq 18$ ,  $-11 \leq k \leq 13$ ,  $-17 \leq l \leq 17$ , reflections collected 12 257, independent reflections 4 566 ( $R_{\text{int}} = 0.052$ ), data/restraints/parameters 4 566/0/283, goodness-of-fit on  $F^2$  1.032;  $R(I > 2\sigma(I))$ :  $R_1 = 0.0451$ ,  $wR_2 = 0.1046$ ;  $R$  (all data):  $R_1 = 0.0761$ ,  $wR_2 = 0.1205$ ; extinction coefficient 0.0011(2); largest difference peak/hole: 4.44/−2.07 e Å<sup>-3</sup>.

## RESULTS AND DISCUSSION

In order to confirm the bonding features proposed for the heterodinuclear complex **1** on the basis of its spectroscopic investigation<sup>1</sup>, its molecular structure has been solved by single-crystal X-ray diffraction analysis. The single crystal suitable for this purpose was obtained by careful recrystallization of **1** from toluene. The molecular structure of complex **1** is presented in Fig. 1. Selected bond lengths and angles are collected in Table I.



1

2

CHART 1

The ferrocene moiety in complex **1** (see Fig. 1) adopts the familiar sandwich geometry with almost coplanar cyclopentadienyl (Cp) rings and with the following characteristic structural parameters: Fe-Cp(centroid; C1-C5) 1.636 Å, Fe-Cp(centroid; C6-C10) 1.652 Å, Cp(centroid)-Fe-Cp(centroid) 178.9°, dihedral angle of best planes defined by C1-C5 and C6-C10, respectively, amounting to 0.94(41)°. Both Cp rings are perfectly eclipsed. The  $\eta^5$ -Cp ligation shows unexceptional intra-ring metrical parameters. The average C-C distances of 1.424 and 1.418 Å for substituted and unsubstituted Cp ring, respectively, as well as the average Fe-C distances of 2.036 and 2.046 Å for substituted and unsubstituted Cp ring, respectively, compare favorably with the corresponding metrical parameters of the ferrocenyl group in the closely related uncomplexed molecule of 1,1'-bis{[(dimethylamino)methyl]ferrocene}<sup>3</sup>. It can be concluded that the metrical parameters of the ferrocene moiety in the coordinated  $\text{Me}_2\text{NCH}_2\text{Fc}$  amine ligand remains unaffected by the N-W coordination. In this regard, it should be mentioned that this coordination becomes reflected in the UV-VIS spectrum of complex **1**, in particular in the ferrocenyl absorption. It is well known that the ferrocene  $^1\text{A}_{1g} \rightarrow ^1\text{E}_{1g}$  d-d transition<sup>4</sup> (22 800 cm<sup>-1</sup>) responds to the electronic nature of the substituent attached to the Cp ring: an electron-releasing substituent such as  $-\text{CH}_2\text{N}(\text{CH}_3)_2$  induces a characteristic d-d band shift to larger wavenumbers (non-coordinate  $\text{Me}_2\text{NCH}_2\text{Fc}$ :

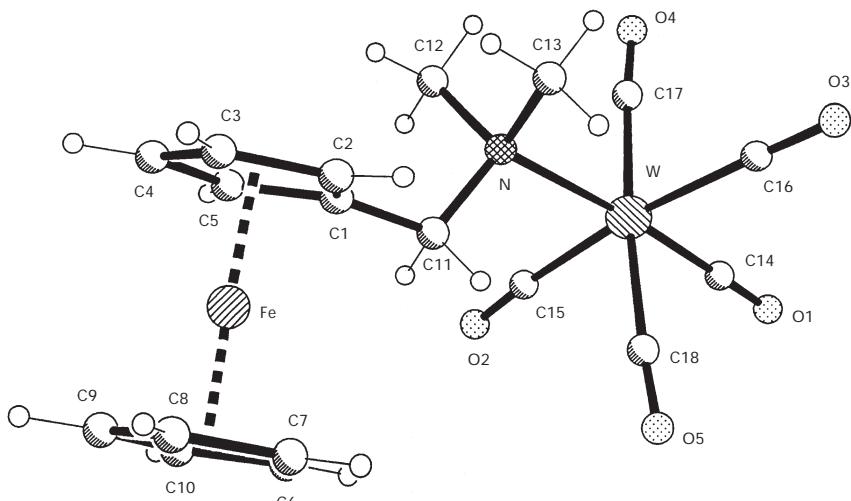



FIG. 1  
Molecular structure of complex **1** with the atom-numbering scheme

TABLE I  
Selected bond lengths and bond angles for complex 1

| Atoms         | Bond lengths, Å | Atoms        | Bond lengths, Å |
|---------------|-----------------|--------------|-----------------|
| W-C(14)       | 1.964(8)        | C(14)-O(1)   | 1.159(9)        |
| W-C(15)       | 2.029(8)        | C(15)-O(2)   | 1.150(9)        |
| W-C(16)       | 2.052(9)        | C(16)-O(3)   | 1.129(10)       |
| W-C(17)       | 2.057(8)        | C(17)-O(4)   | 1.135(9)        |
| W-C(18)       | 2.060(8)        | C(18)-O(5)   | 1.131(9)        |
| N-C(11)       | 1.508(8)        | N-W          | 2.359(5)        |
| N-C(12)       | 1.477(9)        | C(1)-C(11)   | 1.506(9)        |
| N-C(13)       | 1.492(9)        |              |                 |
| Atoms         | Angles, °       | Atoms        | Angles, °       |
| C(14)-W-C(15) | 84.2(3)         | W-C(14)-O(1) | 178.4(7)        |
| C(15)-W-C(16) | 172.3(3)        | W-C(15)-O(2) | 174.5(6)        |
| C(16)-W-C(17) | 87.2(3)         | W-C(16)-O(3) | 175.0(7)        |
| C(17)-W-C(18) | 175.7(3)        | W-C(17)-O(4) | 176.0(7)        |
| C(14)-W-C(16) | 88.1(3)         | W-C(18)-O(5) | 175.2(7)        |
| C(14)-W-C(17) | 89.1(3)         | W-N-C(11)    | 110.5(4)        |
| C(14)-W-C(18) | 87.6(3)         | W-N-C(12)    | 110.9(4)        |
| C(15)-W-C(17) | 93.8(3)         | W-N-C(13)    | 110.7(4)        |
| C(15)-W-C(18) | 88.6(3)         | N-W-C(14)    | 176.1(3)        |
| C(16)-W-C(18) | 89.9(3)         | N-W-C(15)    | 91.9(2)         |
| N-C(11)-C(1)  | 115.8(5)        | N-W-C(16)    | 95.7(3)         |
| C(11)-N-C(12) | 108.5(6)        | N-W-C(17)    | 91.5(3)         |
| C(11)-N-C(13) | 108.6(5)        | N-W-C(18)    | 91.9(2)         |
| C(12)-N-C(13) | 107.5(6)        |              |                 |

22 840 cm<sup>-1</sup>), while an electron-withdrawing substituent acts in the opposite direction. As to complex **1**, the remarkable shift of this "ferrocene" d-d band to smaller wavenumbers (1: 22 000 cm<sup>-1</sup>) is observed<sup>1</sup>. The reason for this spectral behavior may be seen in the "Umpolung" or in the change of the electronic nature of the -CH<sub>2</sub>N(CH<sub>3</sub>)<sub>2</sub> substituent from electron-releasing in the non-coordinate Me<sub>2</sub>NCH<sub>2</sub>Fc molecule to the electron-withdrawing in **1** due to the N-W donor-acceptor interaction.

The formation of the new N-W bond does not significantly affect the original pseudotetrahedral arrangement around the nitrogen atom in -CH<sub>2</sub>N(CH<sub>3</sub>)<sub>2</sub>, as documented by comparing the average N-C bond lengths in **1** (1.492 Å) with those in 1,1'-bis{[(dimethylamino)methyl]ferrocene}<sup>3</sup> (1.461 Å), and the C-N-C bond angles in **1** (107.5–108.5°) with the corresponding angles in 1,1'-bis{[(dimethylamino)methyl]ferrocene}<sup>3</sup> (109.0–111.8°). The C-N-W bond angles in **1** are also very close to undistorted tetrahedron.

The coordination geometry adopted by the hexacoordinated tungsten(0) centre can be described as a distorted octahedron characterized by: (i) non-equal *trans*-positioned W-N (2.359 Å) and W-C(14) (1.964 Å) bonds; (ii) four nearly uniform *cis* W-C bonds (probably with the *cis* W-C(15) bond shorter by about 0.03 Å than the other three *cis* W-C bonds); (iii) angles N-W-C(14) 176.1°, C(15)-W-C(16) 172.3°, C(17)-W-C(18) 175.7° as well as five W-C-O bond angles ranging from 175.0 to 178.4°, all deviating from linearity.

With regard to the bonding situation in the W(CO)<sub>5</sub> moiety of complex **1**, the following structural parameters are of importance: (i) the *trans* W-C(14) bond is significantly shorter than all the *cis* W-C bonds; (ii) the *trans* W-C(14) bond (1.964 Å) is apparently shorter than the average W-C bond (2.025 Å) in the parent complex [W(CO)<sub>6</sub>] (ref.<sup>5</sup>); (iii) the *trans* C-O bond (1.159 Å) is distinctly longer than the average C-O bond (1.130 Å) in [W(CO)<sub>6</sub>] (ref.<sup>5</sup>), while the average *cis* C-O bond (1.136 Å) is only slightly longer than the C-O bond in [W(CO)<sub>6</sub>]. These structural findings can be related to the following spectroscopic data for **1** (ref.<sup>1</sup>): (i) the four *cis*-CO stretching frequencies corresponding to the symmetry-related CO-stretching modes of [W(CO)<sub>6</sub>] are shifted by 46, 27, 45, and 58 cm<sup>-1</sup> to lower wavenumbers, while the analogous frequency shift of the *trans*-CO stretching to lower wavenumbers amounts to 125 cm<sup>-1</sup> (ref.<sup>1</sup>); (ii) the carbonyl <sup>13</sup>C nuclear resonances in **1** occur at lower field compared to carbonyl shielding of parent [W(CO)<sub>6</sub>] (191.10 ppm) and the *trans* CO ligand is more deshielded than the *cis* CO ligands.

Both the structural and related spectroscopic data for complex **1** can be interpreted on the following common basis. The donor-acceptor N-W interaction increases a negative charge on W, which causes expansion of the d-orbitals of W with concurrent increase of the W(d $\pi$ )-CO( $\pi^*$ ) overlap. This effect is more pronounced for W-*trans* CO than W-*cis* CO bonds. Ligands in mutual *trans* positions compete for electrons in particular d-orbital of the central atom. By replacing one strong  $\pi$ -acceptor CO group with the Me<sub>2</sub>NCH<sub>2</sub>Fc ligand, which is a  $\sigma$ -donor only, the W-CO bond in the *trans* position becomes strengthened, while the *trans* C=O bond becomes weakened. The consequences of this *trans* influence in **1** manifest in the observed shorter W-*trans* CO bond and longer *trans* C=O bond, in the lower *trans*-CO stretching frequency and in the downfield shift of the *trans* <sup>13</sup>C resonance as well as in the larger value of the coupling constant *trans*  $^1J(^{183}W, ^{13}C) = 152.60$  Hz in comparison with *cis*  $^1J(^{183}W, ^{13}C) = 132.94$  Hz and with  $^1J(^{183}W, ^{13}C) = 126.2$  Hz for [W(CO)<sub>6</sub>].

It is interesting to note that both the structural and spectroscopic data gained for complex **1** correspond to those found for other [W(CO)<sub>5</sub>L] complexes, where L is an axially symmetric amine ligand. Thus, the W-C and C≡O bond lengths in **1** are very similar to those found for [W(CO)<sub>5</sub>L] complexes (e.g. L = dimethylamine<sup>6a</sup>, pyridine<sup>6b</sup>, piperidine<sup>6c</sup>) and the <sup>13</sup>C NMR data observed for carbonyls in **1** are also very similar to those found for [W(CO)<sub>5</sub>(C<sub>6</sub>H<sub>11</sub>NH<sub>2</sub>)] complex ( $\delta$  201.9 ppm for CO *trans*;  $\delta$  199.1 ppm for CO *cis*; *trans*  $^1J(^{183}W, ^{13}C) = 127$  Hz)<sup>7</sup>. While the infrared CO-stretching region of **1** comprises five bands due to the low symmetry of **1**, other [W(CO)<sub>5</sub>L] complexes (e.g. L = piperidine, pyrrolidine, diethylamine, cyclohexylamine, pyridine)<sup>8</sup>, retaining the ideal  $C_{4v}$  symmetry, possess only three infrared-allowed CO-stretching vibrations, as described previously<sup>1</sup>.

CCDC 154270 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via [www.ccdc.cam.ac.uk/conts/retrieving.html](http://www.ccdc.cam.ac.uk/conts/retrieving.html) (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge, CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.ac.uk).

The authors A. F., F. T. E., and K. J. thank the Deutsche Forschungsgemeinschaft for financial support; I. P. and M. P. thank the Ministry of Education, Youth and Sports of the Czech Republic for financial support of this work within the framework of project LN00A028 (New Inorganic Compounds and Advanced Materials).

## REFERENCES

1. Pavlík I., Pavlišta M., Jacob K., Pietzsch C., Lébl T., Vinklárek J.: *Collect. Czech. Chem. Commun.* **2000**, *65*, 23.
2. Sheldrick G. M.: *SHELXL97, Program for the Refinement of Crystal Structures*. University of Göttingen, Göttingen 1997.
3. Jacob K., Merzweiler K., Thiele K.-H., Voigt F.: *J. Organomet. Chem.* **1996**, *526*, 191.
4. a) Scott D. R., Becker R. S.: *J. Organomet. Chem.* **1965**, *4*, 409; b) Sohn Y. S., Hendrickson D. N., Gray H. B.: *J. Am. Chem. Soc.* **1971**, *93*, 3603; c) Černý V., Pavlík I., Kůstková E.: *Collect. Czech. Chem. Commun.* **1974**, *41*, 3232.
5. Heinemann F., Schmidt H., Peters K., Thiery D.: *Z. Kristallogr.* **1992**, *198*, 123.
6. a) Flörke U., Haupt H.-J.: *Z. Kristallogr.* **1990**, *191*, 298; b) Tutt L., Zink J. L.: *J. Am. Chem. Soc.* **1989**, *108*, 5830; c) Moralejo C., Langford C. H., Bird P. H.: *Can. J. Chem.* **1991**, *69*, 2033.
7. Todd L., Wilkinson J. R.: *J. Organomet. Chem.* **1974**, *77*, 1.
8. Dennenberg R. J., Dahrensbourg D. J.: *Inorg. Chem.* **1972**, *11*, 72.